
소프트웨어재난 연구센터
����ᬫ�⬇ᶫ⿗ᝓ⬣㬗�(5&��⿗ᝓᘃ☃ᚫ䁴

㋣ᛧ⿗ᝓ㘬ㅫㅷ��㝃ㄋㅷ
�ᚤ❨᳧㽀᜷�㣛㻏㬗㽀❧�

Software Disaster Research for Agile and Automated Response and Repair

겨울워크샵
2022.2.9~2.11

연구3그룹:소프트웨어안전공학연구실
최윤자

12022 Winter Workshop

경북대학교 소프트웨어안전공학 연구실 sselab.knu.ac.kr

22022 Winter Workshop

경북대학교 소프트웨어안전공학 연구실 sselab.knu.ac.kr

• Pushing acceleration pedal
increases speed

• Rotating the handle x
degree changes wheels y
degree

• Never opens the doors
while driving

• etc.

Fix this and
that ..

32022 Winter Workshop

무한 탐색공간

42022 Winter Workshop

경북대학교 소프트웨어안전공학 연구실 sselab.knu.ac.kr

Embedded Software
- Multi-tasking
- HW-dependent
- Shared memory
- Reactive
- Periodic

52022 Winter Workshop

모델(추상화)의 필요성

• 10만라인이상의프로그램코드를엄밀하게검증하는것은현실적으로불가능

• 특히, 멀티태스킹프로그램의경우코드사이즈대비기하급수적으로증가하는검증복잡도

1,-

-,-

1,5

1,6

1,7

4,7

4,7

4,7

4,6

4,5

3,5

4,6

3,7

3,6

2,5

4,7

4,6

3,6

2,6

4,7

3,7

2,7

4,7

3,7
4,7

3,7

2,7

4,7

4,6

3,6

2,6

4,7

3,7

2,7

4,7

3,7

Activatask(t2
)

… … 2,-

4,7

4,6

4,5

4,-

-,5

-,6

-,7

1,7

4,7

3,7

2,7

4,7

1,6

1,7

4,7

4,6

3,6

2,6

4,7

3,7

2,7

4,7

3,7

4,7

3,7

2,7

1,5

1,6

1,7

4,7

4,7

4,7

4,6

4,5

3,5

4,6

3,7

3,6

2,5

4,7

4,6

3,6

2,6

4,7

3,7

2,7

4,7

3,7

4,7

3,7

2,7

4,7

4,6

3,6

2,6

4,7

3,7

2,7

4,7

3,7

4,7

4,7

4,7

4,6

4,5

3,5

4,6

3,7

3,6

2,5

4,7

4,6

3,6

2,6

4,7

3,7

2,7

4,7

3,7

wait_sw=ON

…

62022 Winter Workshop

무엇을 추상화할 것인가?

• Application program: static dependency analysis, property-based code slicing

• Operating system: standard à functional modeling

• Operational environment à log-based program synthesis

72022 Winter Workshop

표준문서에 기반한 OS 패턴의 정의 및 모델 자동생성

• Common features of embedded OS

82022 Winter Workshop

1. OS model + Application abstraction : 오경보를 (거의) 없애고 검증효율을 높임

• Domain: Small-scale Embedded Software

• Language: C
• Assumption: operates on a standard embedded OS (OSEK/VDX, Zephyr, Erika, FreeRTOS ..)

OS Model
OS Model

OS Model
OS Model

Configuration

Application
Code model

checking

Counter
example
analysis

Refinements

Concolic
test

OS-in-the-Loop OiL-CEGAR

Heterogeneous composition

92022 Winter Workshop

OS implementation => OS model

External
components

Platform-dependent code

Library
functions

Application-
specific code

2. Application abstraction: main control logic + operational environment

• OS-in-the-Loop verification improves verification efficiency, but it is still expensive

• We want to focus on the property of the main control logic (tasks and their interactions)
• How about library functions, user-defined functions, and platform-dependent functions?

Main control program

Manual abstraction

Random
value

Random

value

Code verification

높은 검증 비용, 낮은 효율 (오경보)

102022 Winter Workshop

모델 자동생성의 필요성

• (흔하지않은) Open source 인경우에도코드를그대로검증하는것은불가능하거나검증비용이

비현실적으로높음

• 대부분의현실적인시스템에서모델이존재하지않음

• 개발과정에서모델을만들지않는경우

• 모델을만들어도공개하지않는경우

• 컴포넌트별로 (각각다른기업에서)개발하여 실행파일을통합하는방식이통상적

• 이경우, (불완전한)컴포넌트스펙이존재할가능성

• 외부라이브러리를사용하는경우

• 함수원형과메뉴얼문서존재가능

• 검증의효과적적용을위해서는코드추상화와모델이필수이나수작업으로모델링을할수있는

전문가가거의없음

112022 Winter Workshop

프로그램 합성기를 이용한 로그 기반 모델 자동생성

• External components : random stubs à log-based, spec-based synthesis

• Library functions: random stubs à log-based, spec-based synthesis

• Platform-dependent code : manual abstraction à log-based synthesis
• Application-specific code: code verification à log-based synthesis

높아질 수 밖에 없는 정확도

낮아지는 정확도

OS implementation => OS model

External
components

Platform-dependent code

Library
functions

Application-
specific code

Main control program
목표모델:
높은(?) 정확도와
작은(?) 사이즈를가진모델

낮은정확도à많은오경보
큰사이즈à높은검증비용

122022 Winter Workshop

로그(입출력값) 기반 프로그램 합성

* 한양대학교이우석교수님강의자료에서발췌
132022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 현실적인 문제점

* 한양대학교이우석교수님강의자료에서발췌

어떤 syntactic constraint
를 줄것인가?

어떤 semantic constraint
를 어떻게 줄것인가?

142022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 실험 사례 1

원본소스코드

Syntactic constraints

Semantic constraints

합성결과
- 100% 정확도
- 72 iterations
- 총 82개
입출력값소요 152022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 실험 사례 2

원본소스코드

Synthesis process 1
1. Start with 10 randomly

generated input/output
constraints

2. Synthesize using Eusolver
and measure accuracy

3. Go to 6 if desired accuracy is
achieved, continue,
otherwise

4. Use CBMC to generate a
counterexample for f(x)==
f_synth(x)

5. Add the counterexample as
a new constraint and go to
step 2

6. Stop

size : 121
time :
4.67 sec

162022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 실험 사례 2

원본소스코드

Synthesis process 2
1. Start with 10 randomly

generated input/output
constraints

2. Synthesize using Eusolver
and measure accuracy

3. Go to 6 if desired accuracy is
achieved, continue,
otherwise

4. Randomly generate 10 more
input/output constraints

5. Add the constraints and go
to step 2

6. Stop
size : 76
time : 163.14 sec

Using iterative refinement is more efficient???

172022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 실험 사례 3 - 1

Iterative refinements
size : 654
time : 378.96 sec

Random
size : 2475
time : 1905.73 sec

182022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 실험 사례 3 - 2

Iterative refinements
size : 1111
time : 197.5 sec

Random
size : 536
time : 322.75 sec

192022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 실험 사례 4

Iterative refinements
size : 1156
time : 386.7 sec

random
size : 1076
time : 1034.21 sec

High accuracy
Bigger size

202022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 앞으로 해결해야 할 일들

코드의 스펙이 없고
소스코드도 없다고
했을때, 어떤 상수와
연산자들을 활용할
것인가?

- 어떻게 constraint 를 생성할 것인가?
- 어느 정도의 정확도를 목표로 할

것인가?
- 어느 정도의 사이즈를 목표로 할

것인가?
- 정확도가 100% 미만일때 오경보를

어떻게 식별하고 처리할 것인가?

212022 Winter Workshop

로그(입출력값) 기반 프로그램 합성 : 부정확성에 따른 오경보(false negative) 및 오양성(false positive)

222022 Winter Workshop

OS implementation

External
compone

nts
Platform-dependent code

Library
functions

Application-
specific code

Main control program

합성된모델

원본프로그램

동적테스트 vs. (프로그램합성을이용한) 자동추상화와정형검증 vs. 수작업추상화와정형검증

SW 재난 DB를
구축하여 재난
패턴을 학습하는
최초의 연구

ㇼ㇨�❫⬄ㄫ�ル㽃�㻫≃៟↏�㴏㬛�ㅷ �᷀⫄⬘��㾯᠗䀴��2236/$������

프로그램
자동합성 기법을
정형모델
자동생성에

도입하는 최초의
연구

㴏㬛᠗◿�⒏ᵟㅷ᷀⫄⬘�㝃ㄋㅷ��-66�������,(((�$FFHVV������ 㻫≃៟↏�ㅷ᷀⫄⬘��ㅛ゗⬄��323/������

오류 패턴 학습과
모델검증을
통합하여
전이검증을

구현하는 최초의
연구

㻫≃៟↏�♫㇫⾷�἗⍟�㇫ㅛ�❫⬄��㾯᠗䀴��3/',������ ⒏ᵟᙧ㎄�⼳ᛇ⎓㍿��☗ᚤ◣��323/������Bounded Model Checking of Signal Temporal Logic Properties using Syntactic Separation 51:21

Algorithm 1: Bounded Model Checking Algorithm of STL
Input: Hybrid automaton ! , STL formula ", time bound #max, maximum bound $
Output: True, or a counterexample of "

1 ¬" ←− ¬" |!max ; // Lemma. 5.1

2 for % = 0 to $ do
3 & ←− {#1, #2, . . . , #" };
4 Ψ# ←− encoding of ! ’s trajectory with variable points & ; // Fig. 6

5 J ←− symbolic partition for ¬" with base partition & ; // Fig. 7

6 ΨJ ←− partition constraint for J with respect to ¬" ; // Fig. 7

7 Ψ¬$ ←− fotr #% (fsepJ (¬"), {0}) ; // Def. 4.5 and Def. 4.13

8 if checkSat(Ψ# ∧ ΨJ ∧ Ψ¬$) is Sat then
9 return counterexample(result.satis!ableAssignment);

10 return True;

Our algorithm is refutationally complete for bounded signals with !nite variability. A signal has
!nite variability if there is only a !nite number of variable points between any two time points.
Consider a time bound #max ≥ 0 and an STL formula " . Suppose that there exists a counterexample
#' that has !nite variability. Then, in the interval [0, #max), the signal #' has a !nite number of
variable points, say (∈ N. By running our algorithm up to the bound (, a formula that encodes a
counterexample of " with at most (variable points is constructed. By Theorem 5.2, the encoding is
satis!able because #' is such a counterexample, and a counterexample of " is reported.
The complexity of the algorithm is determined by two factors: the size of the encoding and

the complexity of the underlying decision procedure. Consider a bound % for one iteration. As
mentioned, the size of the formula Ψ# is) (%), the size of the symbolic partition J is) (% · 2ℎ ($)),
the size of the partition constraint ΨJ is) (|" | · %2 · 4ℎ ($)). Because the size of the full separation is
linear in both the size of the partition and the size of the formula, the size of Ψ¬$ is) (|" | ·% · 2ℎ ($)),
provided that common subterms are shared. In order to share a subformula * , we introduce an
extra variable +' with constraint +' ↔ * , and replace each occurrence of * by +' . Therefore:

Proposition 5.3. In Alg. 1, the size of the encoding for % (line 8) is) (|" | · %2 · 4ℎ ($)).
Checking the satis!ability of SMT constraints is NP-hard [Biere et al. 2009], and the worst-case

complexity is often very high. Speci!cally, typical algorithms for solving polynomial constraints
are doubly exponential [Jovanović and de Moura 2012]. This implies that for polynomial hybrid
automata, the complexity of SMT-based algorithms, including ours, is also doubly exponential in % .
(This high complexity is unavoidable, because the reachability problem is already quite di#cult.)
Despite that, the computation is often feasible in practice, as shown in Sec. 6.

6 EXPERIMENTAL EVALUATION
To experimentally evaluate our methods, we have developed a prototype tool that implements our
STL model checking algorithm of Alg. 1. We have de!ned a simple API to specify hybrid automata
and STL formulas in Python, and implemented functionality to perform STL model checking. In our
tool, we use the Z3 solver [De Moura and Bjørner 2008] as a subroutine to check the satis!ability
of the generated formulas. Because Z3 can deal with nonlinear real arithmetic [Jovanović and
de Moura 2012], STL properties of polynomial hybrid automata can be veri!ed using our tool up to
given bounds. We apply the quanti!er-free encoding [Cimatti et al. 2012a] to eliminate universal
quanti!cation from the encoding. The benchmark models and the prototype implementation are
available at https://github.com/cee5539/stlMC/tree/popl2019.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 51. Publication date: January 2019.

232022 Winter Workshop

프로그램 합성기를 이용한 재난모델 생성

……………
……………
……………
……………

재난유발의심
env 로그 L

OS implementation

External
compone

nts
Platform-dependent code

Library
functions

Application-
specific code

Main control program

P
Synthesiz

ed env
model

…..
…..
…..
…..

?

env main

Main
control

program …………….

반례 p|env

재난유발
입출력환경

재난
모델

L - {p|env}

242022 Winter Workshop

향후 계획

• 합성의정확도를높일수있는로그선택기법

• 점증적합성:모델검증,심볼릭테스트입력생성등기존도구의활용

• 로그분류기법:시스템로그로부터점증적합성의효과를높이기위한 로그분류기법

• 낮은정확도의합성결과로부터얻은검증결과의해석

• 오경보식별기법및합성모델의정제

• 검증된속성에대한해석

• 재난모델생성기법

• 재난모델의정의

• 합성à속성검증à모델정제à합성의사이클을통해재난모델과정상모델분리실험

252022 Winter Workshop

